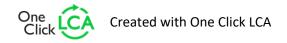


ENVIRONMENTAL PRODUCT DECLARATION


IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

ABI-Doppelwand
Andernacher Bimswerk GmbH & Co. KG

EPD HUB, HUB-1896

Published on 27.09.2024, last updated on 27.09.2024, valid until 27.09.2029

GENERAL INFORMATION

MANUFACTURER

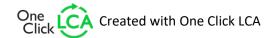
Manufacturer	Andernacher Bimswerk GmbH & Co. KG
Address	Füllscheuerweg 22, 56626 Andernach, Germany
Contact details	info@abi-beton.de
Website	https://www.abi-beton.de/

EPD STANDARDS, SCOPE AND VERIFICATION

Program operator	EPD Hub, hub@epdhub.com
Reference standard	EN 15804+A2:2019 und ISO 14025
PCR	EPD Hub Core PCR Version 1.1, 5 Dec 2023
Sector	Construction product
Category of EPD	Third party verified EPD
Parent EPD number	N/A
Scope of the EPD	Cradle to gate with modules C1-C4, D
EPD author	Solomon Abraha - Güteschutz Beton Nordrhein-Westfalen Beton- und Fertigteilwerke e.V.
EPD verification	Independent verification of this EPD and data, according to ISO 14025:
	☐ Internal verification ☐ External verification
EPD verifier	Imane Uald Lamkaddam as an authorized verifier for EPD Hub
	I .

The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may

not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.


PRODUCT

2

Product name	ABI-Doppelwand
Additional labels	C30/37, d= 6 cm
Product reference	N/A
Place of production	Füllscheuerweg 22, 56626 Andernach, Germany
Period for data	2023
Averaging in EPD	No averaging
Variation in GWP-fossil for A1-A3	N/A

ENVIRONMENTAL DATA SUMMARY

Declared unit	1 m²
Declared unit mass	293.39 kg
GWP-fossil, A1-A3 (kgCO₂e)	3,58E+01
GWP-total, A1-A3 (kgCO₂e)	3,58E+01
Secondary material, inputs (%)	5.9
Secondary material, outputs (%)	80.2
Total energy use, A1-A3 (kWh)	59.4
Net freshwater use, A1-A3 (m³)	0.44

PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

Based on knowledge gathered over 65 years, Andernacher Bimswerk has grown as one of the leading manufacturers for wall elements and ceiling systems. High quality, efficient and innovative - Andernacher Bimswerk produces precast elements for agriculture projects, residential buildings as well as commercial and industrial constructions using modern automatic circulation systems. Standardized processes ensure a high quality production of balconies, wall elements - also with insulation, stairs, ceiling systems and further customized prefabricated elements. Individual designs and visions can be realized easily by high qualified workers, providing the customer the best solution considering cost-effectiveness.

PRODUCT DESCRIPTION

ABI-Doppelwand offers an efficient method for a wide variety of construction projects - combination of high quality and economical aspects with positive effects on the construction time. The double wall elements, consisting of two reinforced concrete shells connected with lattice girders, can be produced with a total thickness of 18 cm to 42 cm, maximum dimensions 3.00 m x 8.50 m. On the construction site the double wall elements are complemented with ready-mixed concrete. This ensures the total load-bearing capacity, as well as wall elements produced monolithically. As a great alternative to conventional methods, the ABI-Doppelwand can be used for the construction of basements, industrial and residential buildings - even for constructions with requirements on water impermeability. This EPD considers one square meter of the ABI-Doppelwand with a thickness of 6 cm (per shell). This EPD does not include the ready-mixed concrete (in-situ process).

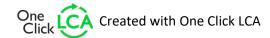
Further information can be found at https://www.abi-beton.de/.

PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass %	Material origin					
Metals	5-6 %	Germany, Europe					
Minerals	94-95 %	Germany, Europe					
Fossil materials	0-1 %	Germany, Europe					
Bio-based materials	N/A	-					

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate


Biogenic carbon content in product, kg C	0
Biogenic carbon content in packaging, kg C	0

FUNCTIONAL UNIT AND SERVICE LIFE

Declared unit	1 m²
Mass per declared unit	293.39 kg
Functional unit	-
Reference service life	50 years

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).

PRODUCT LIFE-CYCLE

SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

Pro	duct st	tage		mbly ige			U	se sta	ge			Ei	nd of I	ife sta	ge	Beyond the system boundaries				
A1	A2	А3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	С3	C4					
×	×	×	MND	MND	MD	MND	MND	MND	MND	MND	MND	×	×	×	×					
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction/ demolition	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling		

Modules not declared = MND. Modules not relevant = MNR

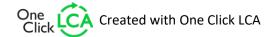
MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

Using an automatic circulation system for the production of ABI-Doppelwand, the manufacturing process consists of preparing the reinforcement including the lattice girders and mounting parts, casting the first concrete shell and compaction, followed by the post-treatment and hardening process in the drying chamber. The second reinforced concrete shell will be connected with the hardened rotated first shell, compacted and transported to the drying chamber. The wall element will be transported to the storage place after the second hardening process.

TRANSPORT AND INSTALLATION (A4-A5)

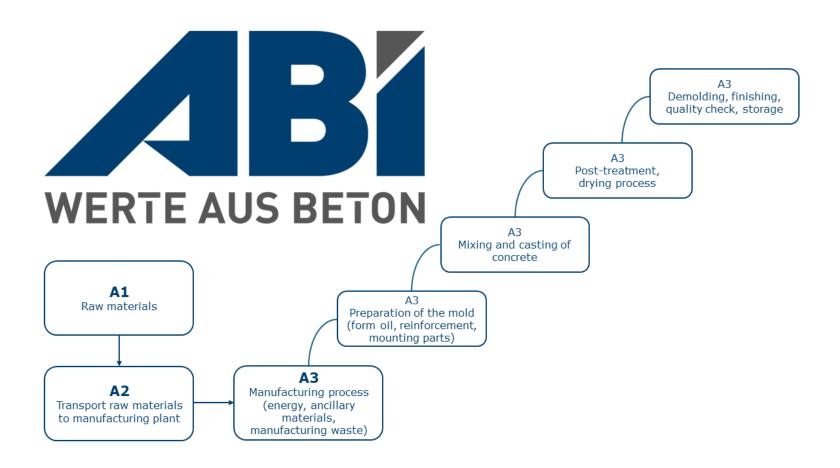
Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions.


This phase is not covered by this EPD.

PRODUCT USE AND MAINTENANCE (B1-B7)

The use phase (B1-B7) is not modelled. Air, soil, and water impacts during the use phase have not been studied.

PRODUCT END OF LIFE (C1-C4, D)


The end of life scenario considers the deconstruction process in C1, the transport to waste processing in C2, waste processing for reuse, recycling, energy recovery in C3 and the disposal and the associated processes in C4. Based on statistics published 94 % of concrete waste (Mineralische Bauabfälle Monitoring 2020) and 84 % of steel waste (Wirtschaftsvereinigung Stahl) are used as recycled materials for construction or infrastructure projects. The remaining 6 % of concrete and 16% of steel are assumed to be treated as material for landfill. Transportation distance to the closest construction waste treatment plant is assumed as 100 km and the transportation method is lorry which is the most common. Benefits and loads of recycled aggregates and steel are modelled in phase D.

MANUFACTURING PROCESS

LIFE-CYCLE ASSESSMENT

CUT-OFF CRITERIA

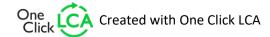
The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

Data type	Allocation
Raw materials	No allocation
Packaging material	No allocation
Ancillary materials	Allocated by mass or volume
Manufacturing energy and waste	Allocated by mass or volume

AVERAGES AND VARIABILITY

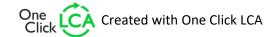

Type of average	No averaging
Averaging method	Not applicable
Variation in GWP-fossil for A1-A3	N/A

This EPD is product and factory specific and does not contain average calculations.

LCA SOFTWARE AND BIBLIOGRAPHY

6

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. The EPD Generator uses Ecoinvent v3.8, Plastics Europe, Federal LCA Commons and One Click LCA databases as sources of environmental data.



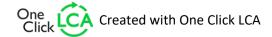
ENVIRONMENTAL IMPACT DATA

CORE ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, PEF

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
GWP – total ¹⁾	kg CO₂e	3,22E+01	1,23E+00	2,40E+00	3,58E+01	MND	3,31E+00	2,75E+00	2,23E+00	3,06E-01	-2,03E+01								
GWP – fossil	kg CO₂e	3,22E+01	1,23E+00	2,40E+00	3,58E+01	MND	3,31E+00	2,75E+00	2,23E+00	3,06E-01	-2,03E+01								
GWP – biogenic	kg CO₂e	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00								
GWP – LULUC	kg CO₂e	1,57E-02	4,55E-04	2,70E-04	1,64E-02	MND	3,30E-04	1,02E-03	1,78E-03	2,89E-04	-3,37E-03								
Ozone depletion pot.	kg CFC-11e	1,62E-06	2,84E-07	1,62E-07	2,06E-06	MND	7,07E-07	6,33E-07	4,37E-07	1,24E-07	-8,65E-07								
Acidification potential	mol H⁺e	1,28E-01	5,22E-03	7,40E-03	1,40E-01	MND	3,44E-02	1,17E-02	2,02E-02	2,88E-03	-9,31E-02								
EP-freshwater ²⁾	kg Pe	3,74E-04	1,01E-05	1,03E-04	4,87E-04	MND	1,10E-05	2,25E-05	6,21E-05	3,21E-06	-8,24E-04								
EP-marine	kg Ne	3,62E-02	1,55E-03	2,06E-03	3,98E-02	MND	1,52E-02	3,46E-03	7,11E-03	9,97E-04	-1,88E-02								
EP-terrestrial	mol Ne	4,31E-01	1,71E-02	2,32E-02	4,71E-01	MND	1,67E-01	3,82E-02	7,85E-02	1,10E-02	-2,24E-01								
POCP ("smog") ³)	kg NMVOCe	1,05E-01	5,48E-03	6,92E-03	1,17E-01	MND	4,59E-02	1,22E-02	2,18E-02	3,19E-03	-1,02E-01								
ADP-minerals & metals4)	kg Sbe	1,40E-04	2,89E-06	1,33E-06	1,44E-04	MND	1,68E-06	6,45E-06	3,96E-05	7,03E-07	-5,53E-04								
ADP-fossil resources	MJ	2,42E+02	1,85E+01	3,04E+01	2,91E+02	MND	4,45E+01	4,14E+01	3,70E+01	8,39E+00	-1,86E+02								
Water use ⁵⁾	m³e depr.	3,55E+00	8,29E-02	1,51E-01	3,79E+00	MND	1,20E-01	1,85E-01	3,73E-01	2,66E-02	-4,54E+00								

¹⁾ GWP = Global Warming Potential; 2) EP = Eutrophication potential. Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO4e; 3) POCP = Photochemical ozone formation; 4) ADP = Abiotic depletion potential; 5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, PEF


Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Particulate matter	Incidence	1,17E-06	1,42E-07	7,78E-08	1,39E-06	MND	9,22E-07	3,17E-07	2,08E-06	5,80E-08	-1,35E-06								
Ionizing radiation ⁶⁾	kBq 11235e	1,25E+00	8,83E-02	4,39E-02	1,38E+00	MND	2,05E-01	1,97E-01	3,59E-01	3,80E-02	4,52E-01								
Ecotoxicity (freshwater)	CTUe	4,73E+02	1,67E+01	3,33E+01	5,23E+02	MND	2,68E+01	3,72E+01	3,87E+01	5,48E+00	-6,81E+02								
Human toxicity, cancer	CTUh	2,40E-08	4,10E-10	4,45E-10	2,48E-08	MND	1,03E-09	9,14E-10	1,49E-09	1,37E-10	1,54E-07								
Human tox. non-cancer	CTUh	3,01E-07	1,65E-08	2,19E-08	3,40E-07	MND	1,94E-08	3,68E-08	4,05E-08	3,58E-09	-4,66E-07								
SQP ⁷⁾	-	1,79E+02	2,14E+01	3,45E+00	2,04E+02	MND	5,79E+00	4,76E+01	3,96E+01	1,80E+01	-6,24E+01								

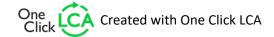
⁶⁾ EN 15804+A2 disclaimer for lonizing radiation, human health. This impact category deals mainly with the eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator; 7) SQP = Land use related impacts/soil quality.

USE OF NATURAL RESOURCES

SE OF TWATORIE RESOURCES																			
Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
Renew. PER as energy ⁸⁾	MJ	8,26E+00	2,09E-01	2,62E-01	8,73E+00	MND	2,54E-01	4,66E-01	2,35E+00	7,29E-02	-1,59E+01								
Renew. PER as material	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00								
Total use of renew. PER	MJ	8,26E+00	2,09E-01	2,62E-01	8,73E+00	MND	2,54E-01	4,66E-01	2,35E+00	7,29E-02	-1,59E+01								
Non-re. PER as energy	MJ	1,57E+02	1,85E+01	2,92E+01	2,05E+02	MND	4,45E+01	4,14E+01	3,70E+01	8,39E+00	-1,86E+02								
Non-re. PER as material	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00								
Total use of non-re. PER	MJ	1,57E+02	1,85E+01	2,92E+01	2,05E+02	MND	4,45E+01	4,14E+01	3,70E+01	8,39E+00	-1,86E+02								
Secondary materials	kg	1,73E+01	5,15E-03	3,28E-03	1,73E+01	MND	1,74E-02	1,15E-02	1,58E-02	1,76E-03	1,05E+01								
Renew. secondary fuels	MJ	4,74E-04	5,19E-05	3,89E-05	5,65E-04	MND	5,70E-05	1,16E-04	3,63E-04	4,61E-05	-1,69E-03								
Non-ren. secondary fuels	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00								
Use of net fresh water	m³	4,32E-01	2,40E-03	3,85E-03	4,38E-01	MND	2,70E-03	5,36E-03	1,97E-02	9,19E-03	-5,34E-02								

8

⁸⁾ PER = Primary energy resources.



END OF LIFE – WASTE

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Hazardous waste	kg	5,57E-01	2,46E-02	2,23E-01	8,05E-01	MND	5,96E-02	5,48E-02	9,41E-02	0,00E+00	-6,21E+00								
Non-hazardous waste	kg	1,67E+01	4,04E-01	4,78E+00	2,19E+01	MND	4,19E-01	9,01E-01	4,19E+01	5,81E+01	-3,33E+01								
Radioactive waste	kg	1,21E-03	1,24E-04	4,58E-05	1,38E-03	MND	3,13E-04	2,77E-04	2,47E-04	0,00E+00	-6,67E-05								

END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Components for re-use	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00								
Materials for recycling	kg	2,36E+00	0,00E+00	0,00E+00	2,36E+00	MND	0,00E+00	0,00E+00	2,35E+02	0,00E+00	0,00E+00								
Materials for energy rec	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00								
Exported energy	MJ	1,66E-02	0,00E+00	0,00E+00	1,66E-02	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00								

VERIFICATION STATEMENT

VERIFICATION PROCESS FOR THIS EPD

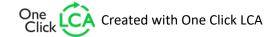
This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents and compliancy with reference standard, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- The digital background data for this EPD

Why does verification transparency matter? Read more online This EPD has been generated by One Click LCA EPD generator, which has been verified and approved by the EPD Hub.

THIRD-PARTY VERIFICATION STATEMENT

I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA and project report, in terms of the data collected and used in the LCA calculations, the way the LCA-based calculations have been carried out, the presentation of environmental data in the EPD, and other additional environmental information, as present with respect to the procedural and methodological requirements in ISO 14025:2010 and reference standard.


I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.

I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification.

Imane Uald lamkaddam, as an authorized verifier acting for EPD Hub Limited 27.09.2024

